This Invention Lets Rural Hondurans Clean Their Water—And Own the Treatment Plants

What’s at stake in a world where science is marginalized? Programs like AguaClara, which offer sustainable, low-cost solutions to communities in need.

Water.gif

Doña Reina remembers the water that ran from the faucet at her home in rural Honduras. It was yellowish, opaque, she said in Spanish, and “y sucia,which means dirty. Then, in 2008, her small village of Tamara received its first water treatment plant, a gravity-fed system made of locally sourced materials that was designed by engineering students in the U.S. Today, Reina’s water is clean enough to drink from the tap.

The students were part of a Cornell University program called AguaClara, which focuses on treating water affordably in infrastructure-poor communities, and without using electricity. Since 2005, AguaClara, which means clear water, has helped complete 14 plants in partnership with Hondurans who planned and built the structures. Now locals own and operate these plants, which serve about 65,000 people.

Villages in Honduras with populations below 15,000 usually don’t have water treatment plants because building small plants is significantly less cost-effective than building large ones. As a result, about 4 million Hondurans experience the same lack of access to safe water that plagues 10 percent of the people on the planet.

caling up sustainable solutions to address this need requires the partnership of private and governmental investment, nongovernmental organizations, and the innovation of critical-thinking institutions like universities. But recent changes to policy and priorities at the federal level, as well as the nation’s current political climate, threaten both the philosophy and funding of these projects.

AguaClara’s lab in Ithaca, New York, is home to 60 undergraduate and graduate students who essentially run the show. They come from half a dozen different fields and are grouped into 19 teams, each with a specific task, like fabrication or ram pump design. Students program computers, manipulate valves, read temperature gauges, and measure pressures.

Read more here.